View Methods Index¶
Below you'll find all of the methods of View, including associated operations and ways of creating them.
View Operations¶
product
¶
Based on definition 5.15, p208
Γ^θ_fRI ⨂ᵀ Δ^{Ψ}_gSJ = (Γ_f ⨂ Δ^{Ψ}_g)^θ_(T⋈R)⋈(T⋈S),I∪J
where Γ_f ⨂ Δ^{Ψ}_g = P + Σ_γ∈(Γ\P) Σ_δ∈Δ {f(γ) x g(δ)).(γ∪δ)}
and P = {f(γ).γ∈Γ |¬∃ψ ∈ Ψ.ψ⊆γ}
Args:
self (View): Γ^θ_fRI
view (View): Δ^{Ψ}_gSJ
inherited_dependencies (Optional[DependencyRelation], optional): T. Defaults to an empty
dependency relation.
Returns:
View: The result of the product calculation.
sum
¶
Based on definition 5.14, p208
Γ^θ_fRI ⊕ᵀ Δ^{0}_gSJ = (Γ_f + Δ_g)^θ_(T⋈R)⋈(T⋈S),I∪J
where (Γ_f + Δ_g) = (Γ ∪ Δ)_h, where h(γ) = f(γ) + g(γ)
Args:
self (View): Γ^θ_fRI
view (View): Δ^{0}_gSJ
inherited_dependencies (Optional[DependencyRelation], optional): T. Defaults to an empty
dependency relation.
Returns:
View: The result of the sum calculation
update
¶
Based on Definition 4.34, p163
Γ^Θ_fRI[D]^↻ = Γ^Θ_fRI[D]ᵁ[D]ᴱ[D]ᴬ[D]ᴹ
Args:
self (View): Γ^Θ_fRI
view (View): D
verbose (bool, optional): Enables verbose mode. Defaults to False.
Returns:
View: The updated view.
answer
¶
Based on definition 5.13, p206
Γ^θ_fRI[Δ^{0}_gSJ]^A = Γ^θ_fRI[Δ^{0}_gSJ]^𝔼A[Δ^{0}_gSJ]^𝓐A
Args:
self (View): Γ^θ_fRI
other (View): Δ^{0}_gSJ
verbose (bool, optional): enables verbose mode
Returns:
View: The result of the answer calculation
negation
¶
Based on definition 5.16, p210
[Γ^Θ_fRI]ᶰ = (Θ ⨂ [Γ]ᶰ)^{0}_[R]ᶰ[I]ᶰ
Args:
self (View): Γ^Θ_fRI
verbose (bool, optional): enable verbose mode. Defaults to False.
Returns:
View: The negated view.
merge
¶
Based on Definition 5.26, p221
Γ^Θ_fRI[Δ^Ψ_gSJ]ᴹ = ⊕^R⋈S_γ∈Γ {f(γ).γ}|^Θ_RI ⨂^R⋈S Δ^Ψ_gSJ ⨂^R⋈S (⭙^R⋈S_<t,u>∈M'ij(γ) Sub^R⋈S_<t,u>(Δ^{0}_gSJ))
Args:
self (View): Γ^Θ_fRI
view (View): Δ^Ψ_gSJ
verbose (bool, optional): enable verbose mode. Defaults to False.
Returns:
View: Returns the merged view.
division
¶
Based on definition 4.38, p168
If ∀δ_∈Δ ∃ψ_∈Ψ ∃γ∈Γ (δ ⊆ γ ∧ ψ ⊆ γ):
Γ^Θ_RI ⊘ Δ^Ψ_SJ = {γ ⊘_Γ Δ^Ψ : γ∈Γ}^Θ_[R][I]
Args:
self (View): Γ^Θ_fRI
view (View): Δ^Ψ_SJ
verbose (bool, optional): Enables verbose mode. Defaults to False.
Returns:
View: The divided view.
factor
¶
Based on definition 5.17 p210 (contradiction)
Based on definition 5.35 p233 (identity)
Based on definition 5.32 p232 (central case)
Contradiction: Γ^Θ_fRI[⊥]ꟳ = {γ∈Γ : ¬∃κ ∈ 𝕂.κ ⊆ γ}^Θ_fRI
Identity: Γ^Θ_fRI[{w.t₁==t₂}^{0}_gSJ]ꟳ = {γ ∈ Γ : t₁==t₂ ∉ γ}_f + Σ_γ∈Γ s.t.t₁==t₂∈γ {(f(γ)[t₁/t₂]).(γ[t₁/t₂])}^Θ_RI
Central: Γ^Θ_fRI[Δ^Ψ_gSJ]ꟳ = Σ_γ∈Γ {f(γ).γ[Δ^Ψ]ꟳ}
Args:
self (View): Γ^Θ_fRI
other (View): ⊥ | {w.t₁==t₂}^{0}_gSJ | Δ^Ψ_gSJ
verbose (bool, optional): Enables verbose mode. Defaults to False.
absurd_states (Optional[list[State]], optional): Manual input of primitive absurd states. Defaults to None.
Returns:
View: The factored view.
depose
¶
Based on definition 5.23
Γ^Θ_fRI[]ᴰ = (Γ_f + [Θ]ᶰ)^{0}_R[I]ᶰ
Args:
verbose (bool, optional): Enables verbose mode. Defaults to False.
Returns:
View: The deposed view.
inquire
¶
Based on definition 5.18, p210
If A(Γ∪Θ) ∩ A(Δ∪Ψ) = ∅ and A(Δ) ∩ A(Ψ) = ∅
O Case: Γ^Θ_fRI[Δ^Ψ_gSJ]ᴵ = (Γ^Θ_fRI ⨂ (Δ^Ψ_gSJ ⊕ˢ({0}^Ψ_SJ ⨂ ([Δ^{0}_gSJ]ᶰ)^nov(A(Δ)))))[⊥]ꟳ
Else if A(Δ∪Ψ) ⊆ A(Γ∪Θ) and S = [R]_Γ∪Θ
I Case: Γ^Θ_fRI[Δ^Ψ_gSJ]ᴵ = (Γ^Θ_fRI ⨂ᴿ (Δ^Ψ_gSJ ⊕ᴿ ([Δ_g]ᶰ|^Ψ_SJ)))[⊥]ꟳ
Else:
Γ^Θ_fRI[Δ^Ψ_gSJ]ᴵ = Γ^Θ_fRI
Args:
self (View): Γ^Θ_fRI
other (View): Δ^Ψ_gSJ
verbose (bool, optional): Enables verbose mode. Defaults to False.
Returns:
View: The resultant inquired view.
suppose
¶
Based on definition 5.22, p219
If A(Γ∪Θ) ∩ A(Δ∪Ψ) = ∅ ∧ Δ^Ψ_gSJ = Δ^Ψ_SJ
O Case: Γ^Θ_fRI[Δ^Ψ_gSJ]ˢ = Γ^Θ'_[R⋈R'][I∪I'] [Δ^Ψ_gSJ]ᵁ[Δ^Ψ_gSJ]ᴱ[Δ^Ψ_gSJ]ᴬ[Δ^Ψ_gSJ]ᴹ
where: Θ'^{0}_R'I' = Θ^{0}_RI ⨂ Nov(Δ^Ψ_[S]ᶰJ []ᴰ)
Else if A(Δ) ⊆ A(Γ∪Θ), [R]_Δ = S, and Δ^Ψ_gSJ = Δ^Ψ_SJ and Ψ = {0}
I Case: Γ^Θ_fRI[Δ^{0}_gSJ]ˢ = Γ^(Θ⨂Δ)_fRI[Δ^{0}_gSJ]ᵁ[Δ^{0}_gSJ]ᴱ[Δ^{0}_gSJ]ᴬ[Δ^{0}_gSJ]ᴹ
Else:
Γ^Θ_fRI[Δ^Ψ_gSJ]ˢ = Γ^Θ_fRI
Args:
self: (View): Γ^Θ_fRI
other (View): Δ^Ψ_gSJ
verbose (bool, optional): Enables verbose mode. Defaults to False.
Returns:
View: The resultant view.
query
¶
Based on definition 5.19, p210
If U_S ⊆ U_R:
Γ^Θ_fRI[Δ^Ψ_gSJ]ꟴ = H + Σ_γ∈Γ Σ_δ∈Δ_s.t.Φ(γ, δ) {w_(γ,δ).δ}^Θ_R⋈<U_R,E_S\E_R,D_S'>,I∪J
Else:
Γ^Θ_fRI[Δ^Ψ_gSJ]ꟴ = Γ^Θ_fRI
which
¶
Based on definition 5.33, p232
Γ^Θ_fRI[Δ^Ψ_gSJ]ᵂ = H + Σ_γ∈Γ《ω.ξ : Ξ(γ,ω.ξ)》|^Θ_RI
Ξ(γ,ω.ξ) = ∃ψ_∈Ψ ∃δ_∈Δ ∃n≥0 ∃<t₁,e₁>,...,<tₙ,eₙ>∈M'ij (∀i,j.(e_i=e_j -> i=j)) ∧ (ξ∪ψ ⊆ γ ∧ ω.ξ = (g(δ).δ)[t₁/e₁,...,tₙ/eₙ])
Args:
self (View): Γ^Θ_fRI
other (View): Δ^Ψ_gSJ
verbose (bool, optional): Enables verbose mode. Defaults to False.
Returns:
View: The resultant view.
universal_product
¶
Based on Definition 5.28, p223
Γ^Θ_fRI[D]ᵁ = {0}^Θ_RI ⨂^R⋈S (⨂^R⋈S_<u,t>∈M'ij Sub^R⋈S_<t,u> (Γ^{0}_fRI))
atomic_answer
¶
Based on definition 5.12, p206
Γ^θ_fRI[Δ^{0}_gSJ]^𝓐A = argmax_γ∈Γ(Δ[{{p} : p ∈ γ}]^𝓐P)_f |^θ_RI
Args:
self (View): Γ^θ_fRI
other (View): Δ^{0}_gSJ
verbose (bool, optional): enables verbose mode
Returns:
View: The result of the atomic answer calculation
equilibrium_answer
¶
Based on definition 5.10, p205
Γ^θ_fRI[Δ^{0}_gSJ]^𝔼A
Args:
self (View): Γ^θ_fRI
other (View): Δ^{0}_gSJ
verbose (bool, optional): enables verbose mode
Returns:
View: The result of the equilibrium answer calculation
existential_sum
¶
Based on Definition 5.34, p233
Γ^Θ_fRI[Δ^{0}_gSJ]ᴱ = Γ^Θ_fRI ⊕^R⋈S (
⊕^R⋈S_<e,t>∈M'ij Sub^R⋈S_<t,e> (BIG_UNION(e)^Θ_SJ)
)
Parsing¶
from_str
¶
Parses from view string form to view form.
Args:
s (str): view string
custom_functions (list[NumFunc | Function] | None, optional): Custom functions used in the
string. It assumes the name of the function is that used in the string. Useful
for using func callers. Defaults to None.
Returns:
View: The output view
to_str
¶
Parses from View form to view string form
Args:
v (View): The view to convert to string
Returns:
str: The view string
from_fol
¶
Parses from first order logic string form to View form.
Args:
s (str): A first order logic string
custom_functions (list[NumFunc | Function] | None, optional): Custom functions used in the
string. It assumes the name of the function is that used in the string. Useful
for using func callers. Defaults to None.
Returns:
View: The parsed view
to_fol
¶
Parses from View form to first order logic string form.
Args:
v (View): The View object
Returns:
str: The first order logic string form.
from_json
¶
Parses from json form to View form
Args:
s (str): The json string
Returns:
View: The parsed view
to_json
¶
Parses from View form to json form
Args:
v (View): The input view
Returns:
str: The output json
from_smt
¶
Parses from first order logic pysmt form to View form.
Args:
fnode (FNode): The pysmt object
custom_functions (list[NumFunc | Function] | None, optional): Custom functions used in the
string. It assumes the name of the function is that used in the string. Useful
for using func callers. Defaults to None.
Returns:
Self: The parsed view
to_smt
¶
Parses from View form to first order logic pysmt form.
Args:
env (Optional[Environment], optional): The pysmt environment to embed
parsed variables. If None will use a fresh environment to avoid clashes.
Defaults to None.
Returns:
FNode: The parsed pysmt object
from_smt_lib
¶
Parses from SMT Lib form to View form.
Args:
smt_lib (str): The input string in SMT Lib structure
custom_functions (list[NumFunc | Function] | None, optional): Custom functions used in the
string. It assumes the name of the function is that used in the string. Useful
for using func callers. Defaults to None.
env (Optional[Environment], optional): The pysmt environment to embed
parsed variables. If None will use a fresh environment to avoid clashes.
Defaults to None.
Returns:
Self: The parsed view
to_smt_lib
¶
Parses from View form to SMT Lib form.
Args:
env (Optional[Environment], optional): The pysmt environment to embed
parsed variables. If None will use a fresh environment to avoid clashes.
Defaults to None.
Returns:
str: The view string in SMT Lib structure
to_english
¶
Parses from View form to english string form.
Args:
v (View): The View object
name_mappings (Optional[dict[str,str]]): Maps strings in variables, predicates etc to
replacements strings
Returns:
str: The english string form.
Other¶
replace (overload1)
¶
Searches for the string name of old item and replaces all instances with new item.
Args:
old_item (str): The search string
new_item (str): The replacement string
Returns:
View: The new view with the replacements made
replace (overload2)
¶
Searches for the arbitrary object and replaces all instances with new item.
Args:
old_item (ArbitraryObject): The search object
new_item (ArbitraryObject): The replacement object
Returns:
View: The new view with the replacements made
replace (overload3)
¶
Searches for the function and replaces all instances with new item.
Args:
old_item (Function): The function to search for
new_item (Function): The function to replace with
Returns:
View: The new view with the replacements made
replace (overload4)
¶
Searches for the predicate and replaces all instances with new item.
Args:
old_item (Predicate): The predicate to search for
new_item (Predicate): The predicate to replace with
Returns:
View: The new view with the replacements made